企业电话

全膜法水处理技术分析(一)

发布日期:

2019-09-11 09:34:34

栏目:

水处理资讯

关注:

1965

分享到:

如何进行水处理?

衡美水处理为您介绍一种先进、实用的水处理技术——全膜法水处理技术

膜分离法是利用选择性透过膜为分离介质、当膜两侧存在某种推动力(如压力差、浓度差、电位差)时,使溶剂(通常是水)与溶质或微粒分离的方法。一般包括电渗析、反渗透、超滤、扩散渗析等,其中的反渗透、超滤相当于过滤技术。

用选择性透过膜进行分离时,使溶质通过膜的方法称为渗析;而使溶剂通过膜的方法则称为渗透。


电渗析法是以电位差为推动力的膜分离法,用于从水溶液中脱除离子,主要用于苦咸水脱盐或海水淡化。其膜是导电膜,即阳离子交换膜和阴离子交换膜。

以压力差为推动力的膜分离法,根据溶质粒子的大小及膜的结构性质(超滤膜、纳滤膜、反渗透膜等),又可分为超滤、纳滤、反渗透等。反渗透法可用于溶剂的纯化和溶液浓缩。反渗透法大部分应用于水的纯化。主要是苦咸水脱盐或海水淡化。反渗透法的另一个重要应用为制备高纯水。

膜是分离技术的核心。膜材料的化学性能、结构对膜分离法起着决定性的作用;一般是高分子材料制成的膜,有纤维素膜、芳香聚酰胺类膜、杂环类膜、聚砜类膜、聚烯烃类膜和含氟高分子膜等。 

膜分离法的特点:

1、不发生相变、常温进行、适用范围广(有机物、无机物等)、装置简单、易操作和易控制等。

2、膜法水处理具有适应性强、效率高、占地面积小、运行经济的特点。所以,国内外已把电渗析法、反渗透法或膜分离法与离子交换相结合的方法应用于锅炉水处理。

第一章 电渗析

电渗析是膜分离技术的一种,它是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的淡化、浓缩、精制或纯化的目的。

电渗析的进展:对电渗析基本概念的研究始于20世纪初,采用动物皮、膀胱膜或人造纤维、羊皮纸等进行实验室研究,但无工业应用价值;随着合成树脂的发展,1950年,朱达试制出具有高选择性的阴、阳离子交换膜后,才奠定了电渗析技术的实用基础;1954年美、英等国将电渗析首先用于生产实践中,淡化苦咸水、制备工业用水和饮用水。此后,电渗析技术逐步引入中东和北非。1959年起,前苏联也开始研究和推广应用。日本主要利用电渗析法浓缩制盐,1969年日本国内食盐有30%是用离于交换膜电渗析法生产的,1970年才将电渗析技术用于苦咸水淡化。

一、电渗析基本原理及过程

1、渗析过程

1)渗析的原理

渗析是最早被发现和研究的一种膜分离过程,它是一种自然发生的物理现象。当两种不同浓度的盐水用一张渗析膜(半透膜或离子交换膜)隔开时,浓盐水中的电解质离子就会穿过膜扩散到稀盐水中去,这种过程称为渗析过程,亦称扩散渗析。渗析过程的推动力是浓度梯度,因此又称浓差渗析。

渗析过程是缓慢进行的,随着盐分浓度梯度的降低、盐的扩散也逐渐减少,直到膜两边浓度相同,建立了平衡,盐分的迁移也就完全停止。

2)渗析的应用

A、血液透析

B、从酸碱废液中回收酸碱。

浓差渗析回收酸见图4-2。料液中由于H2SO4 FeSO4 的浓度高,其中Fe2+H+SO42-均有向渗析液H2O中扩散的趋势,由于使用阴离子交换膜作渗析膜,因此理论上阴膜只允许SO42-透过膜进入渗析液,而H+ 离子由于水合离子半径小,迁移速度快,故也能透过膜迁移到渗析液中。 H+1/2SO42-等摩尔透过膜,以保持溶液的电中性。但是Fe2+ 离子则不透过阴膜。经过一段时间的渗析后,料液中的 H2SO4 即进入渗析液中,实现了 FeSO4 H2SO4的分离,即可实现回收废硫酸的目的。

2、电渗析过程

电渗析过程是电解和渗析扩散过程的组合。电渗析制取淡水的基本过程:利用离子交换膜的选择透过性,即阳膜理论上只允许阳离子通过,阴膜理论上只允许阴离子通过,在外加直流电场作用下,阴、阳离子分别往阳极和阴极移动,它们最终会于离子交换膜,如果膜的固定电荷与离子的电荷相反,则离子可以通过,如果它们的电荷是相同的、则离子被排斥,从而可以制得淡水。电渗析运行时可能发生的过程见图1

1   电渗析运行时可能发生的过程

1 反离子迁移

离子交换膜具有选择透过性。反离子迁移是电渗析运行时发生的主要过程,也就是电渗析的除盐过程,反离子迁移效应大于09

2 同名离子迁移

与膜上固定基团所带电荷相同的离子穿过膜的现象。即浓水中阳离子穿过阴膜,阴离子穿过阳膜,进入淡室的过程,就是同名离子迁移。

这是由于离子交换膜的选择透过性不可能达到100%。当膜的选择性固定后,随着浓室盐浓度增加,这种同名离子迁移影响加大。

3 电解质浓差扩散

由于膜两侧溶液浓度不同,在浓度差作用下,电解质由浓室向淡室扩散,扩散速度随浓度差的增高而增大。

4 水的渗透

在电渗析过程中,由于淡室水浓度低,基于渗透压的作用,会使淡室的水向浓室渗透。

浓度差愈大,水的渗透量也愈大,这一过程会使淡水产量降低。

5 水的电渗透

反离子和同名离子,实际上都是以水合离子形式存在,在迁移过程中携带一定数量的水分子迁移,这就是水的电渗透。随着溶液浓度的降低,水的电渗透量急骤增加。

6 水的压渗

    当浓室和淡室存在着压力差时,溶液由压力大的一例向压力小的一侧渗漏,称为水的压渗,因此操作时应保持两侧压力基本平衡。

7 水的电离

    电渗析运行时,由于电流密度相液体流速不匹配,电解质离子未能及时地补充到膜的表面,而造成淡室水的电离生成H+0H-离子,它们可以穿过阳膜和阴膜。

3、对电渗析各过程的分析

电渗析器在运行时,同时发生着多种复杂过程:

反离子迁移是电渗析除盐的主要过程,其它都是次要过程。

这些次要过程会影响和干扰电渗析的主要过程:

同名离于迁移和电解质浓差扩散与主过程相反,会影响除盐效果;

水的渗透、电渗透和压渗会影响淡室产水量,也会影响浓缩效果;

水的电离会使耗电量增加,导致浓室极化结垢,从而影响电渗析的正常远行。

因此必须选择优质离子交换膜和最佳的电渗析操作条件,以便消除或改善这些次要过程的影响。

4、电渗析法脱盐的基本原理

把阳离子交换膜和阴离子交换膜交替排列于正负两个电极之间,并用特制的隔板将其隔开,组成脱盐(淡化)和浓缩两个系统。

当向隔室通入盐水后,在直流电场作用下,阳离子向阴极迁移,阴离子向阳极迁移,但由于离子交换膜的选择透过性,而使淡室中的盐水淡化,浓室中盐水被浓缩,实现脱盐目的。

电渗析法原理示意图

电渗析上两极的反应——以NaCl溶液为例

   在阳极上:2Cl- - 2e → Cl2↑

             H2O → H+ + OH-

             4OH-  - 4e → O2 + 2H2O

   产生的氯气又有一部分溶于水中:

            Cl2 + H2O → HCl + HClO   

               HClO →HCl + [O] 

    阳极反应有氧气和氯气产生,氯气溶于水又产生HCl及初生态氧[O],阳极呈酸性反应,应当注意阳极的氧化和腐蚀问题。

   在阴极上:  H2O --→ H+ + OH-

           H+ + 2e --→ 2H2↑

         Na+  + OH- --→ NaOH

   在阴极室由于H+离子的减少,放出氢气,极水呈碱性反应,当极水中含有Ca2+、Mg2+和CO32-等离子时,会生成CaCO3和Mg(OH)2等沉淀物,在阴极上形成结垢。

    在极室中应注意及时排除电极反应产物,以保证电渗析过程的安全运行,考虑到阴膜容易损坏,并为了防止Cl-离子透过阴膜进入阳极室,所以在阳极附近一般不用阴膜,而改用阳膜或惰性多孔保护膜。

5、电渗析技术的特点

1 能量消耗低。

   电渗析除盐过程中,只是用电能来迁移水中的盐分,而大量的水不发生相的变化,其耗电量大致与水中的含盐量成正比,尤其是对含盐量为数千mg/L的苦咸水,其耗电量更低。

2 药剂耗量少、环境污染小

常规的离子交换处理水时,树脂失效后需用酸、碱进行再生,再生后生成大量酸、碱再生废液,水洗时还要排放大量酸、碱性废水。

电渗析法处理水时,仅酸洗时需要少量的酸。因此电渗析法是耗用药剂少,环境污染小的一种除盐手段。

3)对原水含盐量变化适应性强

    电渗析除盐可按需要进行调节。产水量可按需要从每日几m3至上万m3变化。可根据设计一台电渗析器中的段数、级数或多台电渗析器的串联、并联或不同除盐方式(直流式、循环式或部分循环式)来适应。

4)操作简单,易于实现机械化、自动化

   电渗析器一般是控制在恒定直流电压下运行,不需要通过频繁地调节流速、电流及电压来适应水质、温度的变化。因此,容易做到机械化、自动化操作。

5)设备紧凑耐用、预处理简单

电渗析器是用塑料隔板、离子交换膜及电极组装而成,其抗化学污染和抗腐蚀性能均良好,隔板相膜多层更加在一起,运行时通电即可制得淡水,因此设备紧凑耐用。

由于电渗析中水流是在膜面平行流过,而不需透过膜,因此进水水质不像反渗透控制的那样严格,一般经砂滤即可,相对而言预处理比较简单。

(6)水的利用率较高

电渗析器运行时,浓水和极水可以循环使用,与反渗透相比,水的利用率较高,可达到70%~80%,国外可高达90%。废弃的水量少,再利用和后处理都比较简单。

6、电渗析的缺点

电渗析只能除去水中的盐分、而对水中有机物不能去除,某些高价离子和有机物还会污染膜。电渗析运行过程中易发生浓差极化而产生结垢(用频繁倒极电渗析可以避免),这些都是电渗析技术较难掌握而又必须重视的问题。

与反渗透相比,由于它的脱盐率较低,装置比较庞大且组装要求高,因此它的发展不如反渗透快。


衡美水处理为您带来全方位的水处理服务,让您高枕无忧!

关于衡美
工程案例
原水处理设备资讯
衡美贴心服务
联系衡美

传真:0318-2987119
邮箱:aaa0318@126.com
固话:0318-7705775/7705875
手机:13623388759/15003188759
网址:http://www.hshengmei.com
地址:河北省衡水市新华西路2138号

Copyright © 衡水衡美水处理设备有限公司 All Rights Reserve. Design By laoshang